碳酸钙土的单位粘聚力

纳米碳酸钙影响下红黏土强度特性试验研究
2021年2月27日 试验,分析了在不同干密度条件下各梯度纳米碳酸钙掺量对重塑红黏土黏聚力、内摩擦角、抗剪强度以及应力应变曲线的影 响,从红黏土矿物颗粒胶体化学的角度 2024年5月14日 微生物诱导碳酸钙沉积技术(MICP)是近年来兴起的经济、环保和耐久的防风治沙方法。为了研究MICP固化土体的工程特性,本文对MICP进行了系统的归纳总结, 微生物诱导碳酸钙沉积(MICP)固化土体研究 进展 hanspub2022年12月26日 摘要: 三峡库区自然灾害频发;微生物诱导碳酸钙沉积(MICP)技术是一种具有能耗低、无污染且可持续优点的土体加固技术。 黏性紫色土是三峡库区主要土壤 MICP固化三峡库区黏性紫色土试验研究 2019年2月12日 近年来,基于微生物矿化作用的微生物诱导碳酸钙沉积(microbial induced calcium carbonate precipitation,MICP)技术成为土体改性技术的热点议题,引起国内外学界的广泛关注 [9 10] MICP技术利 基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良
.jpg)
纳米碳酸钙影响下红黏土强度特性试验研究
摘要: 为了探寻纳米碳酸钙对桂林红黏土力学强度特性的影响机理,利用TSZ1型三轴试验仪进行不固结不排水三轴压缩试验,分析了在不同干密度条件下各梯度纳米碳酸钙掺量对 [目的]实现对软土地基的绿色加固对工程建设及生态环境具有重要意义为此,采用微生物诱导碳酸钙沉积(MICP)技术和生物炭联合固化软土[方法]首先确定了 MICP灌浆最优细菌浓度和 国家科技期刊开放平台2024年6月5日 微生物诱导碳酸钙沉淀(MICP)技术是新兴的岩土工程绿色加固技术,在黄土边坡加固方面具有良好的应用前景。 MICP加固黄土受多种因素影响,除了外界环境、材料 微生物诱导碳酸钙沉淀加固黄土影响因素试验研究2020年9月19日 提出一种基于微粒固载成核的微生物固化技术 (MICPMPIN),用于改善微生物诱导碳酸钙沉淀 (MICP)固化粗砂的力学特性,即在灌浆前给菌液中加入一定量 Strength of Biocemented coarse sand with kaolin micro
.jpg)
中国南海岛礁吹填珊瑚砂剪切力学特性
2021年2月27日 角降低较小;密实度90%时,含水量大于5%,黏聚力降低较小;(3)密实度对吹填珊瑚砂的黏聚力影响规律不明显,密实度对 内摩擦角影响较显著,当含水量大于5%时,随着密实度的增加内摩擦角显著增大;(4)在高荷载条件下,含水量和密实度对2020年1月5日 微生物固化砂土强度的增长主要源于碳酸钙晶体对土体黏聚强度的 提高。微生物固化砂土的强度主要包括土骨架强度和碳酸钙晶体胶结强度两部分,前者受土体性质及相关参数影响,后者主要取决于碳酸钙 微生物固化砂土强度增长机理及影响因素试验研究2018年5月7日 摘要: 通过在膨润土中掺入不同量的 CaCO 3 模拟高放射性核废料(highlevel radioactive waste,HLW)处置库周围地 下水侵入屏障生成 CaCO 3 后膨润土性状的变化。 通过配置 4 组不同 CaCO 3 掺入量的膨润土进行了有荷膨胀试验、压缩试验和直剪试验,运用太沙基一维固结理论计算了渗透系数,并采用扫描电子显微镜 膨润土碳酸钙混合物的力学特性2019年9月6日 高,但是粘聚力与内摩擦角的增大规律并不相同:粘聚力的增大速率随水泥掺量的增 大而不断减小,内摩擦角的增大规律随水泥掺量的增大而呈“S”型。关键词:红黏土;水泥土;直剪试验;内摩擦角;粘聚力 中图分类号:TU411 文献标志码:B 文章编号:16730062(2019)04水泥掺量对红粘土固结体抗剪特性影响的试验研究

黄土的物理力学性质doc
2017年4月25日 由图24可见:粘聚力随压实度的增大而增加,压实度增大,土粒间的距离减小,粒间引力增大,故粘聚力增加。 抗剪强度是内摩擦角与粘聚力的综合反映,根据前面的试验结果,得出抗剪强度与压实度之间的关系,结果见图25。土体抗剪强度作为结构设计最重要的参数,受含水率影响较大,随着淤泥中含水率增大,其呈降低趋势。高含水率亦影响土体粘聚力,使土颗粒间作用力减弱。黄丽珊的研究表明,淤泥的粘聚力与液限和含水率之差呈正比,表明粘聚力受含水率影响。淤泥(土力学)百度百科本文选取5种碳酸钙含量(429、1745、9866、13185、14382 g/kg)差异显著的北方碱性旱地农田土壤(黑土、淡黑钙土、潮土、灰钙土和黄绵土)为研究对象,分析土壤及其各粒级团聚体中有机碳、碳酸钙和不同形态钙含量的分布特征及相关性,探讨碳酸钙对碱性旱地土壤有机碳的影响。石灰性土壤团聚体中钙形态特征及其与有机碳含量的关系 2021年5月27日 粒之间的黏聚力 大部分甚至全部消失,呈团聚状 的颗 粒体分散成原级的黏土颗粒,土体原有的强度被破坏 渐降低,最底层土体的碳酸钙 含量 (PDF) 樊恒辉2021仿岩溶碳酸氢钙改性分散性土的试验研究
.jpg)
碳酸钙 百度百科
碳酸钙是一种无机化合物,化学式为CaCO₃,是石灰石、大理石等的主要成分。碳酸钙通常为白色晶体,无味,基本上不溶于水,易与酸反应放出二氧化碳。它是地球上常见物质之一,存在于霰石、方解石、白垩、石灰岩、大理石、石灰华等岩石内,亦为某些动物骨骼或外壳 2024年9月8日 通过 图3看出,加入MICP的根土复合体抗剪强度在任何含根量下都要高于未加入MICP的根土复合体,这是由于MICP以微生物为核心产生的具有胶结作用的碳酸钙减少了土体间的孔隙,增强了土体间的粘聚力;在04%时提高了1699 kPa,此时的MICP对根土复合MICP作用下根土复合体强度研究 汉斯出版社2017年10月6日 弹性模量的单位 是达因每平方厘米。“弹性模量”是描述物质弹性的一个物理量,是一个总称,包括 ,“弹性模量”和“体积模量”是包含关系。 三、砂性土的简单介绍: 颗粒间无粘聚力,性质松散,主要由0075~2 毫米的颗粒所组成无塑性 砂性土的弹性模量是多少 百度知道2018年4月18日 利用MICP技术加固福建标准砂,进行不同围压下的三轴试验,结果表明,标准砂加固前后黏聚力的提高值为601 kPa。利用Plaxis软件模拟高速公路路基加固技术,通过MICP诱导碳酸钙沉淀技术对高速公路路基加固,改变岩土体基本性能,利用强度 折 微生物加固路基强度及稳定性

MICP作用下根土复合体强度研究 hanspub
2021年3月30日 岩土工程的跨学科途径。其原理是某些微生物能够形成一种脲酶,它能将尿素分解成铵根离子和碳酸根 离子。在含有钙离子的条件下生产具有胶结作用的碳酸钙,最后具有胶结作用的碳酸钙会充满土体孔隙,将松散的土颗粒交接成一个整体。 针对MICP 固化砂土2015年6月3日 以黏聚力为研究对象,表 6 给出了4个因素中每个水平的均值和极差,进一步绘制出各因素对黏聚力影响的直观分析图,如 图 8 所示。 由以上图表可知,各因素对黏聚力的敏感性由大到小依次为C>A>D>B。基于正交设计的岩质相似材料配比试验研究 仁和软件2011年2月23日 方面有显著提高,尤其体现在黏聚力上,主要原因是 配比后的重塑土发生胶接作用,各种物理化学作用 产生的固化胶结力促进了颗粒间黏聚力的增长[6]。改良土早期抗剪强度偏低,随着时间的推移,7d抗 剪强度显著提高,主要表现在改良土的黏聚力有显改良黄土强度特性与工程处置试验研究2024年5月14日 微生物诱导碳酸钙沉积技术(MICP)是近年来兴起的经济、环保和耐久的防风治沙方法。为了研究MICP固化土体的工程特性,本文对MICP进行了系统的归纳总结,从MICP的国内外发展与现状、MICP固化土体的力学特性、MICP固化土体的作用机理分析 微生物诱导碳酸钙沉积(MICP)固化土体研究 进展

纳米碳酸钙影响下红黏土强度特性试验研究
2021年2月27日 根据不同起始干密度下,各纳米碳酸钙掺量对 重塑红黏土黏聚力、内摩擦角的影响绘出各指标间 关系曲线图(图1,图2)。由图1、图2可见,在不同 纳米碳酸钙掺量下重塑红黏土的黏聚力、内摩擦角 与起始干密度的关系分别为指数函数和线性函数,2021年2月27日 根据不同起始干密度下,各纳米碳酸钙掺量对 重塑红黏土黏聚力、内摩擦角的影响绘出各指标间 关系曲线图(图1,图2)。由图1、图2可见,在不同 纳米碳酸钙掺量下重塑红黏土的黏聚力、内摩擦角 与起始干密度的关系分别为指数函数和线性函数,纳米碳酸钙影响下红黏土强度特性试验研究2024年6月5日 微生物诱导碳酸钙沉淀(MICP)技术是新兴的岩土工程绿色加固技术,在黄土边坡加固方面具有良好的应用前景。MICP加固黄土受多种因素影响,除了外界环境、材料特性和加固方式等因素外,钙源、胶结液浓度、养护龄期和养护方式等对微生物加固黄土也起着决定 微生物诱导碳酸钙沉淀加固黄土影响因素试验研究2020年1月5日 微生物诱导碳酸钙沉淀(MICP)可以显著改善砂土的工程力学特性,但其固化效果易受诸多因素影响。基于不同胶结水平微生物固化砂土试样,开展固结排水三轴剪切试验和扫描电镜测试,探讨了MICP技术的固化效果及其相关机理;在此基础上,研究了胶结液浓度、砂土初始密实度、胶结液浓度配比等 微生物固化砂土强度增长机理及影响因素试验研究
.jpg)
人工胶结球状颗粒材料的三轴试验研究
2018年4月3日 下,试样强度随含蜡率减小而增大,胶结试样的强度主要取决于膨润土的量,其中含蜡率在667% 到50%之间时,强度增长较缓;③试样的黏聚力随含蜡率的变化存在最小值,同一含蜡率下,钢珠 试样黏聚力较大,内摩擦角一般较小,且含蜡率对玻璃珠试样内摩擦角的影响比2021年2月24日 可以提高土体的黏聚力和内摩擦角,无侧限抗压强 度也有所提高。从微观上,添加木质素可以为EICP 技术生成的碳酸钙提供成核位点,且生成的碳酸钙 晶型都是稳定的方解石。采取不同掺量的木质素对EICP固化土加以改 良,进行三轴固结不排水剪切试验。取烘干 木质素联合固化粉土的试验研究 c—土的粘聚力kpa; ψ—土的内摩擦角; 土的抗剪强度是一个受诸多因素控制的指标,迄今为止,库仑理论仍然是描述其特性的最为合理的实用理论;压实黄土路基填土,其饱和度多数在65%~80%之间,实际上仍处于非饱和状态,严格意义上应采用非饱和土的强度理论;黄土的物理力学性质百度文库2020年5月19日 大型物理模型试验是研究复杂工程问题的重要方法,如何快速、准确地确定相似材料配比是试验中至关重要的一环为降低试验成本、简化试验步骤、充分调用原料性能,采用河砂、水泥和石膏这三种最普通的原料,以骨胶比(河砂与水泥石膏的质量比)和水膏比(水泥与石膏的质量比)为变量,进行了45 大尺寸工程模型试验中的相似材料配比试验研究 NEU

膨润土碳酸钙混合物的力学特性
2018年5月7日 摘要: 通过在膨润土中掺入不同量的 CaCO 3 模拟高放射性核废料(highlevel radioactive waste,HLW)处置库周围地 下水侵入屏障生成 CaCO 3 后膨润土性状的变化。 通过配置 4 组不同 CaCO 3 掺入量的膨润土进行了有荷膨胀试验、压缩试验和直剪试验,运用太沙基一维固结理论计算了渗透系数,并采用扫描电子显微镜 2003年12月10日 难溶盐碳酸钙试验 有机质试验 土的 离心含水当量试验 附录 试验资料的整理与试验报告 附录 土样的要求与管理 粘聚力 回弹模量 压缩模量 渗透系数 试样质量 体积压缩系数 单位压力 先期固结压力 中华人民共和国国家标准 2017年4月19日 生成碳酸钙 微生物诱导的碳酸钙作为粘结剂,填充 于岩土基质孔隙中来增强岩土基质的强度,并表现 出与岩土基质良好的亲和性和环境友好等特征,具 有广泛的工程应用前景[13] MICP 技术在诸多岩土工程问题处理上表现出 强大的应用潜力,前期的研究及 微生物矿化风沙土强度及孔隙特性的试验研究 2018年2月9日 MICP胶结作用生成了方解石结晶包裹在砂土颗粒表面或填充于砂颗粒之间,这改变了土体的性质,使 得土体的黏聚力和内 摩擦角均有所提高 MICP 胶结钙质砂动力特性试验研究 ResearchGate
.jpg)
钙质砂的胶结性及对力学性质影响的实验研究。
2009年8月4日 瑚、海藻、贝壳等)成因的、富含碳酸钙或碳酸镁等物质的特殊岩土介质,主要分布于热带海洋中。钙质 砂的主要化学成分为CaCO。。钙质砂有骨骸、球粒、包粒和团粒4种颗粒类型[1’2]。棱角大,有内孔隙,孔隙比高,易破碎,是钙质砂的主要特征[1’2]。2017年4月19日 生成碳酸钙 微生物诱导的碳酸钙作为粘结剂,填充 于岩土基质孔隙中来增强岩土基质的强度,并表现 出与岩土基质良好的亲和性和环境友好等特征,具 有广泛的工程应用前景[13] MICP 技术在诸多岩土工程问题处理上表现出 强大的应用潜力,前期的研究及 微生物矿化风沙土强度及孔隙特性的试验研究 2020年12月4日 粉体改性剂对碳酸钙进行表面改性的目的是提高碳酸钙的应用性能,拓宽碳酸钙的应用范围和市场,并通过粉体的表面涂层改性可引领一些新的应用领域和蓝海市场。 1 改性碳酸钙在聚氯乙烯领域应用 与普通碳酸钙相比,改科普 改性碳酸钙的24种应用及相应改性剂作用 知乎2021年3月30日 通过 图3看出,加入MICP的根土复合体抗剪强度在任何含根量下都要高于未加入MICP的根土复合体,这是由于MICP以微生物为核心产生的具有胶结作用的碳酸钙减少了土体间的孔隙,增强了土体间的粘 MICP作用下根土复合体强度研究 hanspub

胶结物质驱动的土壤团聚体形成过程与稳定机制 issas
2023年8月6日 碳酸钙对团聚体稳定性的作用可能依赖于碳酸钙颗粒分布和黏粒含量,高含量黏粒和细颗粒碳酸钙对土壤有很好的团聚作用 [29]。 在弱碱性氧化环境的黄土堆积过程中,粉尘堆积物可通过雨水、霜雪、生物活动等作用发生次生碳酸盐化,次生碳酸盐与黄土粉尘中黏粒物质结合形成微团聚体 [ 30 ] 。2021年5月2日 粒之间的黏聚力 大部分甚至全部消失,呈团聚状 的颗 粒体分散成原级的黏土颗粒,土体原有的强度被破坏 渐降低,最底层土体的碳酸钙 含量 (PDF) 樊恒辉2021仿岩溶碳酸氢钙改性分散性土的试验研究 2023年6月10日 聚氨酯胶粘剂的九大注意事项聚氨酯胶粘剂粘度高、耐水、耐寒、耐高温,广泛应用于各个领域。上海曹氏化工科技发展有限公司为大家整理了以下聚氨酯胶黏剂的九大注意事项。 1、外观处理形成优秀粘接的条件之一是对基胶粘剂基础知识、粘接原理和注意事项 知乎2017年5月30日 为了探寻纳米碳酸钙对桂林红黏土力学强度特性的影响机理,利用TSZ1型三轴试验仪进行不固结不排水三轴压缩试验,分析了在不同干密度条件下各梯度纳米碳酸钙掺量对重塑红黏土黏聚力、内摩擦角、抗剪强度以及应力应变曲线的影响,从红黏土矿物颗粒胶体化学的角度阐释纳米碳酸钙对红黏土 纳米碳酸钙影响下红黏土强度特性试验研究
46.jpg)
Strength of Biocemented coarse sand with kaolin micro
2020年9月19日 有钙离子转化为碳酸钙时的沉淀量(单位 : g ),其中 孔隙体积按初始体积 3612 m L 计算。所有试样的碳酸 钙沉淀量都分 的粘聚力 更大 [48 土的抗剪强度是指土体对于外荷载所产生的剪应力的极限抵抗能力。 在工程中,一般应用饱和土的强度理论公式,即库仑理论。 τf=c+σtgψ(24) 式中,τf—剪应力(kpa); σ—法向应力(kpa); c—土的粘聚力(kpa); ψ—土的内摩擦角。黄土的物理力学性质百度文库2021年4月20日 现增加的趋势;王子文等[12]利用MICP 固化淤泥质土强度,发现固化后的抗剪强度明显提高,内摩擦 角可提高396~552 倍;刘璐等[13]将MICP 技术应用于堤坝加固,以改善堤坝表层砂土的力学性能; 许燕波等[14]基于生物矿化原理,用碳酸钙固结重金属离子,使得土壤中活泼的重金属离子转变为碳微生物加固黏土的影响因素与机理分析 IWHR2021年2月27日 角降低较小;密实度90%时,含水量大于5%,黏聚力降低较小;(3)密实度对吹填珊瑚砂的黏聚力影响规律不明显,密实度对 内摩擦角影响较显著,当含水量大于5%时,随着密实度的增加内摩擦角显著增大;(4)在高荷载条件下,含水量和密实度对中国南海岛礁吹填珊瑚砂剪切力学特性

微生物固化砂土强度增长机理及影响因素试验研究
2020年1月5日 微生物固化砂土强度的增长主要源于碳酸钙晶体对土体黏聚强度的 提高。微生物固化砂土的强度主要包括土骨架强度和碳酸钙晶体胶结强度两部分,前者受土体性质及相关参数影响,后者主要取决于碳酸钙 2018年5月7日 摘要: 通过在膨润土中掺入不同量的 CaCO 3 模拟高放射性核废料(highlevel radioactive waste,HLW)处置库周围地 下水侵入屏障生成 CaCO 3 后膨润土性状的变化。 通过配置 4 组不同 CaCO 3 掺入量的膨润土进行了有荷膨胀试验、压缩试验和直剪试验,运用太沙基一维固结理论计算了渗透系数,并采用扫描电子显微镜 膨润土碳酸钙混合物的力学特性2019年9月6日 高,但是粘聚力与内摩擦角的增大规律并不相同:粘聚力的增大速率随水泥掺量的增 大而不断减小,内摩擦角的增大规律随水泥掺量的增大而呈“S”型。关键词:红黏土;水泥土;直剪试验;内摩擦角;粘聚力 中图分类号:TU411 文献标志码:B 文章编号:16730062(2019)04水泥掺量对红粘土固结体抗剪特性影响的试验研究2017年4月25日 黄土的物理力学性质doc, PAGE PAGE 24 黄土的物理力学性质 §21 黄土的物理性质 试验用黄土采用甘肃兰(州)海(石湾)高速公路工程现场扰动土,其物理性质主要由它的物理性质指标来体现,其物理性质指标主要有:孔隙率、天然含水量、容重和液塑 黄土的物理力学性质doc
.jpg)
淤泥(土力学)百度百科
淤泥属特殊土,具有不同于一般土的特性。淤泥质软土含水率较高,一般大于 40 %,具有流变性、触变性;颜色一般呈深灰色或暗绿色,并有臭味; 天然孔隙比大于 1 0; 含有机质,甚至变成泥炭土 (有机质含量大于 50 %时); 强度低、压缩性大、透水性差、抗剪强度 低等。本文选取5种碳酸钙含量(429、1745、9866、13185、14382 g/kg)差异显著的北方碱性旱地农田土壤(黑土、淡黑钙土、潮土、灰钙土和黄绵土)为研究对象,分析土壤及其各粒级团聚体中有机碳、碳酸钙和不同形态钙含量的分布特征及相关性,探讨碳酸钙对碱性旱地土壤有机碳的影响。石灰性土壤团聚体中钙形态特征及其与有机碳含量的关系 2021年5月27日 粒之间的黏聚力 大部分甚至全部消失,呈团聚状 的颗 粒体分散成原级的黏土颗粒,土体原有的强度被破坏 渐降低,最底层土体的碳酸钙 含量 (PDF) 樊恒辉2021仿岩溶碳酸氢钙改性分散性土的试验研究 碳酸钙是一种无机化合物,化学式为CaCO₃,是石灰石、大理石等的主要成分。碳酸钙通常为白色晶体,无味,基本上不溶于水,易与酸反应放出二氧化碳。它是地球上常见物质之一,存在于霰石、方解石、白垩、石灰岩、大理石、石灰华等岩石内,亦为某些动物骨骼或外壳 碳酸钙 百度百科
.jpg)
MICP作用下根土复合体强度研究 汉斯出版社
2024年9月8日 通过 图3看出,加入MICP的根土复合体抗剪强度在任何含根量下都要高于未加入MICP的根土复合体,这是由于MICP以微生物为核心产生的具有胶结作用的碳酸钙减少了土体间的孔隙,增强了土体间的粘聚力;在04%时提高了1699 kPa,此时的MICP对根土复合